

Title

Joe Puccio

February 2, 2022

Proof. O is open $\rightarrow F = O^c$ is closed.

$F = O^c$ is closed iff it contains all its limit points.
Take $x = \text{limit point of } O^c$ Goal: show that $x \in O^c$

$\forall \epsilon > 0$ $V_\epsilon(x) \cap O^c$ contains at least a point in y in O^c other than x .

Assume that $x \in O$ $\exists V_y(x) \subseteq O$

$V_y(x) \cap O^c = \emptyset$

In particular for $\epsilon = y$

We should have

$V_y(x) \cap O^c$ contains at least a point y in O^c i.e. $V_y(x) \cap O^c \neq \emptyset$

Conclusion: $x \notin O \rightleftarrows x \in O^c \rightarrow O^c$ contains all its limit points $\rightarrow O^c$ is closed.

Reverse Implication:

We assume that O^c is closed. We want to show that O is open.

Take $x \in O$

x is not a limit point of O^c
 $\exists V_\epsilon(x) | V_\epsilon(x) \cap O^c = \{\emptyset \text{ or } \{x\}\}$

$V_\epsilon(x) \cap O^c$ can not be equal to x because $x \in O$
So $V_\epsilon(x) \cap O^c = \emptyset \rightarrow V_\epsilon(x) \subset O$ open.

□

Compact Sets

Definition $K \neq \emptyset K \subset \mathbb{R}$

K is compact if every sequence $(x_n) \in K$ has a convergence subsequence $\in K$.
 $K \subset \mathbb{R}$ i.e. $\forall (x_n) \in K \exists \bar{x}$ and $\exists (x_{n_k}) | \lim(x_{n_k}) = \bar{x}$

$\bar{x} \in K$

Theorem (HB - HEINE-BOREL)

K is compact iff K is closed and bounded.

Proof. K compact $\implies K$ closed and bounded

1) K bounded $\exists M > 0 \forall x \in K | |x| \leq M$

Assume this is not true $\implies \forall M > 0 \exists x \in K | |x| > M$

$M = 1 \implies \exists x_1 \in K | |x_1| > 1$

Missing part.

x_n is not bounded.

But $x_n \in K$ and K compact. $\implies \exists \bar{x} \in K$ and $(x_{n_k}$ subsequence of (x_n) $| (x_{n_k} \rightarrow \bar{x} \implies |(x_{n_k})| \rightarrow |\bar{x}|$

$|(x_{n_k})| > n_k$

$n_k = m \quad |x_m| > m$

(R Triangle Inequality) $\implies (|(x_{n_k})|)$ being convergent is bounded contradiction with $|(x_{n_k})| > n_k$ which implies $\lim |(x_{n_k})| = \infty$

Conclusion

K compact $\implies K$ bounded.

K compact $\implies K$ closed?

Take $x = \text{limit point of } K$

K compact $\implies \exists \bar{x} \in K, \exists (x_{n_k}) | (x_{n_k}) \rightarrow x$

because $x_n \rightarrow x$

$(x_{n_k} \text{ subsequence} \implies (x_{n_k} \rightarrow x$

$\exists(x_n) x_n \in K : \lim(n \rightarrow \infty) \text{ of } x_n = x$

$x_n \neq x \ \forall n$

Take $(x_n) \in K \implies x_n$ is bounded because K is bounded

x_n bounded $\implies x_n$ has a convergent subsequence (x_{n_k})

i.e. $\exists \bar{x} : \lim(k) x_{n_k} = \bar{x} \ \bar{x} \neq x_{n_k}$

It remains to show that $\bar{x} \in K$

2 cases

1) $\bar{x} = \text{limit point of } K$.

i.e. $x_{n_k} \neq \bar{x} \ \forall k$

then $\bar{x} \in K$ because K closed.

(it contains all its limit points)

2) $\exists k_0 | x_{n_{k_0}} = \bar{x}$ then $\bar{x} \in K$

Open Cover

Definition: An open cover of A

O_i open sets $i \in I$

$A \subset \bigcup_{i \in I} O_i$

□